Phase Asymptotic Semiflows, Poincaré's Condition, and the Existence of Stable Limit Cycles
نویسندگان
چکیده
منابع مشابه
Phase Asymptotic Semiflows, Poincare's Condition, and the Existence of Stable Limit Cycles
A concept of phase asymptotic semiflow is defined. It is shown that any Lagrange stable orbit at which the semiflow is phase asymptotic limits to a stable periodic orbit. A Lagrange stable solution of a C 1 differential equation is considered. When the second compound of the variational equation with respect to this solution is uniformly asymptotically stable and the omega limit set contains no...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSwitching-Induced Stable Limit Cycles
Physical limits place bounds on the divergent behaviour of dynamical systems. The paper explores this situation, providing an example where generator field-voltage limits capture behaviour, giving rise to a stable, though non-smooth, limit cycle. It is shown that shooting methods can be adapted to solve for such non-smooth switching-induced limit cycles. By continuing branches of switching-indu...
متن کاملExistence of Limit Cycles in the Repressilator Equations
Regulatory networks are collections of interacting molecules in a cell. One particular kind, oscillatory networks, has been discovered in many biological processes. Well-known examples are the circadian clock [Dunlap, 1999] and the cell cycle [Nurse, 2000], where the oscillatory nature of the process plays a central role. In recent years, researchers have been able to implement artificial regul...
متن کاملExistence Conditions of Thirteen Limit Cycles in a cubic System
As we know, the second part of the Hilbert problem is to find the maximal number and relative locations of limit cycles of polynomial systems of degree n. Let H(n) denote this number, which is called the Hilbert number. Then the problem of finding H(n) is divided into two parts: find an upper and lower bounds of it. For the upper bound there are important works of Écalle [1990] and IIyashenko a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1996
ISSN: 0022-0396
DOI: 10.1006/jdeq.1996.0018